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D-01187 Dresden, Germany
3 B I Verkin Institute for Low Temperature Physics and Engineering, Ukrainian National
Academy of Sciences, 47 Lenin Avenue, Kharkov, 61164, Ukraine

Received 11 March 2002
Published 12 July 2002
Online at stacks.iop.org/JPhysA/35/6191

Abstract
The relation between integrable magnetic impurities located at the boundary
and embedded into a one-dimensional correlated electron chain is discussed.
Misleading statements by Ge et al are corrected and placed into proper context.

PACS numbers: 75.20.Hr, 71.27.+a

In a recent paper, Ge et al [1] claim to have solved the boundary Kondo impurity problem in
one-dimensional q-deformed t–J models. Impurities can either be placed at the boundary of a
chain or be embedded into the chain. For the latter case, periodic or open boundary conditions
yield the same results for the behaviour of the magnetic impurity itself. The condition of
integrability imposes the absence of a reflection amplitude on impurities embedded into the
host (elastic scatterers), while if placed at the boundary the impurity together with the edge
are pure reflectors and have, by their nature, no transmission. The two cases can be comprised
by considering an open-end chain and allowing the impurity to be placed anywhere along the
chain [2]. If placed at the boundary the edge itself produces the reflection properties [2, 3].
This allows a direct comparison of the two situations. The properties of the impurity situated
in the bulk and at the edge of the integrable t–J chain as a function of the magnetic field
are the same [2]. Moreover, the structure of the Bethe ansatz equations for this case of open
boundary condition (including the impurity factors) is identical in both cases of an impurity
situated in the bulk of an open chain and at the edge of that chain.

An impurity embedded into a lattice interacts with the two neighbouring sites and is in
this sense nonlocal (it involves three-site interactions). Consequently, the impurity interacts
with two partial waves, e.g. right and left moving electrons, rather than one partial wave as for
a contact or on-site interaction. An impurity at the edge is, by definition, the last site of the
chain and has only one neighbour to interact with. In contrast to impurities at the boundary,
a finite concentration of impurities can be embedded into a correlated electron chain.

In their paper, Ge et al [1] incorrectly criticized the method employed to solve the
class of embedded impurity models. In this comment, we aim to correct these statements.
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Their criticisms are quite general, affecting all magnetic impurities embedded into a Luttinger
liquid, independently of the host being a strongly correlated electron system or a Heisenberg
spin system. Their incorrect arguments are also independent of the type of impurity, whether
Kondo-like or Anderson-like or any other impurity.

We believe that, while some of the arguments presented by Ge et al [1] are clearly false,
other statements are implicitly incorrect. Below we respond to these issues (not in their order
of appearance in [1] but in a logical order), so the reader can form his/her own opinion about
this rather complicated and subtle subject.

(1) Contrary to what is claimed by Ge et al [1], the monodromy matrix is properly defined
for each of the embedded impurity systems we consider. The monodromy matrix is usually
denoted by L̂ and is defined as the product of the X̂ two-particle scattering matrices for each
electron and one factor corresponding to the impurity, Ŝ. For instance, for the supersymmetric
t–J model with an embedded mixed valent impurity the monodromy is defined in equation (2.8)
of [4], for an impurity of the Kondo exchange type embedded into the supersymmetric t–J

model it is shown in appendix A as equation (A3) of [5], and for the degenerate Anderson
impurity (U → ∞ limit) embedded in the degenerate t–J model as equation (7) in [6]. The
monodromy matrix has the same generic form for every integrable combination of correlated
electron host and impurity. The X̂ matrices for the host and Ŝ for the impurity differ from case
to case. Both are explicitly defined in each of our papers. (For other combinations of host and
impurity see [7, 8].)

(2) At this point we would like to stress the well-known fact that there are two different
(independent) approaches to the algebraic Bethe ansatz for systems of particles with internal
degrees of freedom: (i) that mentioned in point (1), which for impurity models has been
extensively reviewed in [9] (the number of operators in the monodromy is given by the
number of electrons and the impurity); and (ii) the graded approach, in which the charge
sector is treated as one more degree of freedom, see, for example, [10, 11] (the number of
operators in the monodromy is given by the number of sites plus impurity). For magnetic
impurities in a correlated electron host this approach has been used in [2, 3, 12]. In each
of these papers the monodromy is properly defined. This is also the case in [13, 14], which
correspond to embedded nonmagnetic impurities.

(3) The condition of integrability requires that the X̂ matrices satisfy the Yang–Baxter
relations (also known as triangular relations) among themselves and with the impurity Ŝ matrix.
For a given host, the choice of impurity is then not arbitrary. Note that the impurity Ŝ matrix
is generally a two-parameter function (a discrete parameter is the spin of the impurity and the
coupling to the host, θ , is a continuous parameter) and the triangular relation is satisfied for all
values of the parameters. The triangular relation is also obeyed for Ŝ matrices with different
values of θ , so that a finite concentration of impurities with a distribution of coupling constants
can be embedded into a correlated electron host (or Heisenberg chain) without destroying the
integrability.

Let us illustrate this with the example of the graded approach for the su(1|2)-symmetric
t–J model with a dynamical magnetic impurity. In the graded approach one can start from
the R-matrix R = (u + i)−1(iI + uP), where u is the spectral parameter, I = δα,βδj,k is the
identity matrix (α, β, j, k = 1, 2, 3 denote all possible states), and P = (−1)[j ][α]δα,kδj,β is
the graded permutation operator (e.g. FFB grading with [1] = [2] = 1 and [3] = 0). These
R-matrices satisfy the standard Yang–Baxter relations

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u). (1)

We introduce the usual L-operators for each site of the inhomogeneous lattice Lj (uj ) =
PR(uj ), where j denotes the quantum space pertaining to the Hilbert space of the j th site
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of the chain and uj (j = 1, . . . , N , where N is the number of sites) are the rapidities of the
inhomogeneous lattice [11]. The L-operator of the impurity for the simplest case of S = 1/2
(higher spin cases can be considered similarly) is defined as Limp ≡ L(u−θ), i.e. it differs from
L-operators of other sites of the lattice by the shift of the spectral parameter. The constant θ

defines the coupling of the impurity site to the host chain. Naturally, the L-operators (including
the impurity one) satisfy the Yang–Baxter relations

R12(u1 − u2)L1(u1)L2(u2) = L2(u2)L1(u1)R12(u1 − u2). (2)

The monodromy of the inhomogeneous chain for periodic boundary conditions can be
defined as

L̂PBC(u, θ, u1, . . . , uN) = Limp(u − θ)L1(u − u1) · · ·LN(u − uN). (3)

These monodromies satisfy the Yang–Baxter relations

R12(u − v)L̂PBC(u)L̂PBC(v) = L̂PBC(v)L̂PBC(u)R12(u − v) (4)

where only the dependence on spectral parameters is written explicitly. Obviously, this relation
holds for the impurity L-operator embedded at any place of the monodromy operator (i.e. the
impurity can be placed into the chain at any link), as well as without the impurity operator.
The transfer matrices, defined as the traces over the auxiliary spaces of the monodromies,
mutually commute for different spectral parameters, which constitutes the exact integrability
of the problem.

For open boundary conditions one can introduce additional reflection matrices K(u),
which satisfy the reflection equations [15]

R12(u − v)K1(u)R21(u + v)K2(v) = K2(v)R12(u + v)K1(u)R21(u − v). (5)

We define the monodromy for an open system (see [2, 3, 12])

L̂OBC(u, θ, u1, . . . , uN) = L̂PBC(u, θ, u1, . . . , uN)K(u)(L̂PBC)−1(−u, θ, u1, . . . , uN) (6)

which satisfies the reflection equation

R12(u − v)L̂OBC
1 (u)R21(u + v)L̂OBC

2 (v) = L̂OBC
2 (v)R12(u + v)L̂OBC

1 (u)R21(u − v) (7)

where the indices 1 and 2 explicitly denote the auxiliary subspaces for the monodromies.
Clearly, the reflection equations for the monodromies with open boundary conditions are
satisfied for the impurity L-operator placed in any order in the monodromy (i.e. the impurity
can be situated at any link of the open chain, including exactly at the edge of the chain)
[2, 3, 12]. We choose diagonal reflection matrices K(u) = δj,khj (u), where j, k = 1, 2, 3 and
hj (u) are determined by the values of boundary potentials and/or magnetic fields. The transfer
matrices for open chains, defined as the traces of the monodromies over the auxiliary spaces,
mutually commute for different spectral parameters, as for the case of periodic boundary
conditions. In this way the exact integrability is preserved. We emphasize that both Yang–
Baxter relations and reflection equations need to be satisfied for the integrablity of an open
chain for the non-trivial cases of more than one site in a chain.

(4) As a consequence of the impurity matrix Ŝ the components of the monodromy matrix,
denoted by Â11, Â12, Â21 and Â22 by Ge et al [1] in their introduction, are different from
those of the correlated electron chain without impurity. The statements of Ge et al appear to
erroneously imply that these components do not change. The commutation relations of the
Âij operators, however, are indeed the same as for the chain without impurity within scheme
(i) of the algebraic Bethe ansatz (see point (2)). This is the consequence of the Yang–Baxter
relations obeyed by the X̂ and Ŝ matrices and the underlying Yangian symmetry. This is
different, however, within formulation (ii) (see point (2)), where the effect of the impurity
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matrix in the charge sector (first level Bethe ansatz) changes the commutation relations in the
spin sector (second level).

(5) The vacuum state of the correlated electron chain with impurity is the direct product
of the vacuum state of the chain without impurity with the spin-polarized state of the impurity.
The two vacuum states are therefore not identical. The operator Â21 plays the role of a ‘raising
operator’ and, when applied to the vacuum state, it yields zero. This is consistent because
both the vacuum and the Âij matrices are modified due to the presence of the impurity. In
their statements, Ge et al seem to question this issue.

In all of our papers we have considered impurities having the same spin symmetry as the
host (in most cases, it is SU(2) symmetry). In the terminology used in [1], this corresponds
to l = 1.

(6) The trace of the monodromy, Â11 + Â22, is of course modified by the presence of the
impurity, which is a consequence of the impurity Ŝ matrix factor in the monodromy matrix.
Ge et al [1] seem to have misunderstood this point. It is also incorrect that impurities can
only modify the first level Bethe ansatz equations. The second (and higher) level Bethe
ansatz equations arise from eliminating ‘unwanted’ terms from the Bethe states. Whether the
second level Bethe ansatz equations contain impurity factors depends on the kind of impurity
considered. For instance, an Anderson impurity (S = 1/2) would act only on the first level
Bethe ansatz equations, and the spin dynamics is generated through spin-paired electron states
(charge two-strings) [6]. However, an impurity with an explicit Kondo exchange (see [5])
or an Anderson impurity with internal spin dynamics (mixed valent impurity between two
magnetic configurations) [4, 7, 8] act on both first and second level Bethe ansatz equations.
It is now absolutely clear from the above (see point (3)) that, for open boundary conditions,
the Bethe ansatz equations are the same for a magnetic impurity situated at any link of the
host (i.e. in the bulk or at edges).

(7) The trace of the monodromy matrix is the transfer matrix of the system. Transfer
matrices for different spectral parameters commute with each other and generate the conserved
currents of the system. The first derivative of the logarithm of the transfer matrix for periodic
boundary conditions is usually the Hamiltonian, although higher derivatives could also be
chosen. Although the procedure is very tedious, the Hamiltonian can be obtained this way.
The construction of the Hamiltonian is only possible within the graded approach of the
algebraic Bethe ansatz, i.e. the nested scheme (ii) (see point (2)). This has been carried out
explicitly for the simpler situations of a magnetic impurity of arbitrary spin embedded into
Heisenberg chains of host spin 1/2 [16] and 1 [17]. The impurity is located on a link and
interacts with both neighbouring host sites. (Note that for the Heisenberg chain both schemes
(i) and (ii) for the algebraic Bethe ansatz coincide.) The situation is similar (only more
involved) for a magnetic impurity embedded into a correlated electron system (for instance,
the SU(3) invariant t–J model is equivalent to a spin 1 Heisenberg chain). The generic exact
form of the Hamiltonian has been derived in [2] (see equation (7)) and [3] (see equation (1)).
The procedure has been reviewed in appendix B of [12]. (The schematic form of the impurity
Hamiltonian is also given in [6] (see equations (14)–(16)), [5] (see equations (B8)–(B10)), [7]
(see equation (9)) and [18] (see equation (9)).

(8) An integrable impurity embedded into a host lattice is located on a link of the chain
and interacts with electrons on both sites joined by the link. Although the reflection amplitude
is zero as a consequence of the integrability, the impurity interacts with both partial waves
(forward and backward moving electrons). The interaction necessarily involves three sites
(the impurity and two neighbouring sites of the chain) and is in this sense nonlocal. The same
construction for an impurity at the edge yields a local interaction, i.e. with only one partial
wave or site, due to the natural absence of a second site [3]. It is frequently overlooked that,
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if the impurity is placed at the edge, the effects of the boundary fields (boundary fields and
impurity yield additive contributions to the energy) have to be separated.

Below we state the Bethe ansatz equations arising from the two schemes of the algebraic
Bethe ansatz described above (both schemes yield the same result), for the su(1|2)-symmetric
t–J model with dynamical magnetic S = 1/2 impurity and open boundary conditions with
one of the possible choices for the diagonal reflection matrix (with local boundary potentials
µ± acting only on the edges of the open t–J chain). The eigenfunctions and eigenvalues of
the Schrödinger equation are parametrized by the charge rapidities {pj }Ne

j=1, where Ne is the
number of electrons in the system, and the spin rapidities {λα}Mα=1, where M is the number
of down spins, which are solutions of the Bethe ansatz equations. We point out again that
these equations do not depend on the position of the dynamical magnetic impurity, i.e. they
are the same for the impurity situated at any link in the bulk or at any edge. The Bethe ansatz
equations read (see [2, 3, 12])

∏

±
e1(λα ± θ)

Ne∏

j=1

e1(λα ± pj ) =
∏

±

M∏

β=1,
β �=α

e2(λα ± λβ)

(8)

e2N
1 (pj )

∏

±
eξ±(pj )e2(pj ± θ) =

∏

±

M∏

β=1

e1(pj ± λβ)

where en(x) = (2x + in)/(2x − in) and ξ± = 2(1 − 1/µ±). Clearly, the choice of one of ξ±

being equal to zero and the other to −2iθ + 2 [12] reproduces the Bethe ansatz equations of
[1] for the isotropic case γ → 0.

In summary, the general form of the Bethe ansatz equations is the same for both impurities
embedded into the host or impurities placed at the boundary for open boundary conditions.
The properties of the impurity are then independent of their position in the chain. The coupling
of the impurity to the host is usually characterized by an ‘impurity rapidity’ θ . This impurity
rapidity can be any complex number (this does not affect the integrability, i.e. the Yang–Baxter
relations). If θ is real, the usual thermodynamic properties expected for the Kondo effect are
obtained. An imaginary θ , on the other hand, yields a non-Hermitian ‘Hamiltonian’ with
three-spin terms if the impurity is embedded in the lattice. This situation can be overcome
[2, 3, 12] if the impurity is placed at the edge of an open chain, where the non-Hermitian
three-site terms vanish. The Bethe ansatz equations are, however, the same in both cases of an
impurity situated in the bulk of an open chain or at the edges of an open chain. An imaginary
θ leads to a boundary bound state in the first level Bethe ansatz equation (charge sector). This
bound state suppresses the Kondo effect and is interpreted as an ‘image’ or ‘ghost’ spin.

Unfortunately, Ge et al have not presented the physical consequences of their model
constructions.
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